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Abstract- -Stress  and shear strain rate in a rotational shear zone between two concentric circular boundaries are 
est imated for both Newtonian and non-Newtonian materials. Tangential  shear  stress in the shear zone r,o is 
proportional to 1/r 2, where r is distance from the centre of rotation• The principal stresses cq and o 3 at a point are  

oriented at 45 ° to the radius through the point from the centre of rotation. The shear strain rate ~ is proportional 
to 1/r 2n, where n is the stress exponent  in the constitutive equation• The distribution of strain ellipses 
systematically varies from place to place as a function of the total angle of rotation of the circular boundaries and 
of n. Deformation appears prominently concentrated in a narrow zone close to the interior boundary when n 
becomes large. 

INTRODUCTION 

A rotational shear deformation apparatus is useful for 
structural geologists, because it can generate very large 
shear strains that are comparable to geological strains 
(Jessell & Lister 1991, Passchier & Sokoutis 1993), 
although such a geometry never occurs in natural defor- 
mation. Passchier & Sokoutis (1993) and Passchier et al. 

(1993) utilized a rotational shear apparatus to model the 
behaviour of porphyroclast systems, whereas Jessell & 
Lister (1991) analysed strain localization in a rotational 
shear zone. However,  the strain estimate by Passchier & 
Sokoutis (1993) is not straightforward, and the stress 
estimate by Jessell & Lister (1991) is ambiguous [in 
equation (2), p. 433, their r should be the distance from 
the centre of rotation: see later[. The applicability of 
their experimental results would be more reliable if 
stress and strain were properly estimated. We present 
here short comments on stress and strain in a rotational 
shear zone. We first present stress and strain analyses for 
Newtonian viscous flow, then expand the analyses into 
non-Newtonian flow. 

SHEAR STRAIN RATE 

The stress and strain in a Newtonian material de- 
formed in rotational shear is given by Reiner (1960, 
pp. 20-34). Figure 1 is a sketch of the boundary con- 
ditions of the flow. According to Reiner (1960, p. 22), 
the parameter  that controls the viscous resistance in 

rotational flow is not the velocity gradient but the shear 
strain rate @). The basic relationship between shear 
strain rate and tangential shear stress fro at a point is 
/~?) = frO, where /~ is the viscosity of the Newtonian 
material. Shear strain rate at each point in rotational 
flow is given by 

dO 
= r ~ r '  (1) 

where r is the distance from the centre of rotation to the 
point and t} is the angular velocity [equation (22) of 
Reiner, 1960, p. 22]. The angular velocity for time- 
independent flow is expressed as a function of r as: 
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Fig. I. Sketch of the boundary conditions for rotational shear  flow. r 
and 0 are the distance from the centre of rotation and the angular 
velocity; Re and Ri, the radii of.the external and internal boundaries of  
the rotational shear zone; and D~ and D~ the angular velocities at r = Re 

and r = Ri, respectively. 
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Fig. 2. Deflection of circles during progressive deformation. h is put as zero in this case. 0,  indicates the rotation angle of
the internal boundary in radians. When n = 1. the material is Newtonian. whereas when n # 1, the material is non-

Newtonian.

where R, and Ri are the radii of the external and internal
boundaries of the rotational shear zone, and 1R, and Ri,
the angular velocities at r = R, and r = Ri respectively
[equation (38) of Reiner, 1960, p. 371.  Thus by substitut-
ing 4 into equation (t), we obtain

-2(.i2i - si,)  1
Ij= 1 1 7 . (3)

This equation indicates that shear strain rate is not
constant across the shear zone but is proportional to
l/r*.

STRAIN ELLIPSES

Figure 2 shows how initial circles of finite radius, set
within the rotational shear zone before deformation,
change their shapes during progressive deformation.
These diagrams are drawn employing the particle-path

technique used by Masuda & Ando  (1988, p.  343) to
show the deflection of marker circles in the simple shear
flow. Although the shapes are not ellipses, due to the
inhomogeneity of strain rate throughout a rotational
shear zone, they provide us with a general idea of the
strain intensity as r changes. Inner regions of the shear
zone suffer obviously higher strains than outer ones.

STRESS

Stress state in the shear zone is given by the following
equations in cylindrical coordinates when the defor-
mation is slow [Lamb 1932, p. 579; equation (ll)]:

(4)
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Fig. 3. Stress trajectories in the rotational shear zone. Solid and 
dashed lines indicate cq and c~ 3, respectively. 

where Vr and Vo are velocities parallel to the r and 0 axes, 
respectively, Orr, O00 and rr o are the stress components,  
and p is the pressure, defined as the mean of Orr and o00. 
As the particles in rotational flow keep a constant 
distance from the centre (r) during deformation, we put 
Vr = 0, Vo = rO and 0 Vo/O 0 = 0. Substituting these into 
equation (4), we obtain 

Orr ~ --p 

o00 = - P  (5) 

1 1 r 2 

The trajectories of principal stresses o 1 and o3(o 1 > o3) 
are calculated from these values (e.g. Jaeger & Cook 
1969, pp. 13-14) as shown in Fig. 3. Ol and o3 at each 
point are oriented at 45 ° to the radial axis from the centre 
of the cylindrical coordinates. The shear stress frO is 
proportional to 1/r a. 

NON-NEWTONIAN MATERIALS 

For a t ime-independent flow of non-Newtonian 
materials, the basic equation is given by 

= k~o,  (6) 

where ~ (=  r dt}/dr) is the shear strain rate, k is a 
constant, fro is the tangential shear stress and n is the 
stress exponent [Reiner 1960, p. 244, equation (4)]. 
Following Reiner's (1960, pp.. 244-245) description, we 
derive the angular velocity (0)  as 

- -  - -  Re  n e  ( 7 )  b -  fii fie 1 R2n~ i 2n" 
1 1 ~ +  R ~ " - R ~  n ' 

R~ ~ R2e n 

where Re, Ri, ~e and ~i are the same boundary con- 
ditions of the shear deformation as those used for the 

Newtonian material (Fig. 1). Thus, we give ~, as a 
function of r as 

? ) _  l ~ i -  ~ - 2 n  
1 1 jh--~ • (8) 

Ri 2- R 2- 

Shear strain rate is found to be proportional to 1/r :n. If 
we put n = 1, then ?) is exactly the same as that of 
equation (3) for the Newtonian material, and 1/k is the 
viscosity. How initial circles before the deformation are 
deflected with increasing strain is shown in Fig. 2. Strain 
gradient close to the internal boundary becomes steeper 
with increasing n. 

The shear stress rro is obtained from equations (6) 
and (8) as 

rr0 I k 1 1 ~ " )  " (9) 

R2e ° 

The shear stress is thus proportional to 1/r 2 even for the 
non-Newtonian flow. 

In order to know stress trajectories for a non- 
Newtonian flow, we considor the rheological equations 
[Tomita, 1975, pp. 257-258; equations (7.17-7.19)]: 

Orr = --P + 2LO OVr 
Or 

= L o ( l  Ovr V_o + Ovo I 
rr° I-r - ~  r Or ] 

L t\ Or/ oO 

(10V r V 0 OVoI2][(1/n )-  1]/2 

+ira0 r+-57/] 

(10) 

where L is a constant. For the rotational flow, 1/' r -~" 0 ,  120 
= rO and OVo/O0 = 0. Substituting these values into 
equation (10), gives the following three expressions: 

Orr = --p, 

O00 = --p, (11) 

fro = L~vn.  

The third of these equations is essentially identical to 
equation (6), with k in that equation (6) equivalent to 
1/L n. These values of stresses indicate that trajectories 
of principal stresses Ol and o 3 for the non-Newtonian 
flow are the same as those for Newtonian flow (Fig. 3). 

REMARKS 

(1) Figure 2 shows how n affects the distribution of 
strain ellipses in the ring shear zone. The deformation 
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b e c o m e s  m o r e  c o n c e n t r a t e d  in a na r row  zone  close to 
the  in te rna l  b o u n d a r y  as n increases .  Jessel l  & Lis te r  
(1991) used  O C P  ( o c t a c h l o r o p r o p a n e )  for  the i r  r ing 
shear  e x p e r i m e n t  and  showed  tha t  s t ra in  loca l iza t ion  
occu r r ed  a r o u n d  the  in te rna l  b o u n d a r y .  Since n for  O C P  
is 4.5 (Bons  1993), the  s t ra in  loca l iza t ion  in O C P  is 
cons is ten t  with the  d i s t r ibu t ion  of  s t ra in  el l ipses  for  
n = 4.5 shown in Fig.  2. H o w e v e r ,  some  resul ts  by  
Jessel l  & Lis te r  (1991) a re  no t  just  as p r e d i c t e d  for  a non-  
N e w t o n i a n  viscous mate r ia l .  The  d i f ferences  are  pre-  
sumab ly  due  to the  dev ia t ion  of  so l id-s ta te  flow of  O C P  
f rom power - l aw  viscous flow. 

(2) Passchier  et al. (1993) and Passchier  (1994) 
suggest  tha t  n is one  of  the  i m p o r t a n t  p a r a m e t e r s  that  
con t ro l  the  shape  of  po rphy roc l a s t  sys tems in mylon i t es  
in shea r  zones .  Since the  b o u n d a r y  cond i t ions  of  a r ing 
shea r  d e f o r m a t i o n  are  d i f ferent  f rom those  of  na tu ra l  
shear  zones ,  the  shapes  of  the  s t ra in  el l ipses  shown in 
Fig.  2 a re  ha rd ly  equ iva len t  to those  a r o u n d  p o r p h y r o c -  
lasts in myloni tes .  H o w e v e r ,  the  genera l  t e n d e n c y  for  
loca l iza t ion  of  d e f o r m a t i o n  with d i f ferent  n d e m o n -  
s t ra ted  in Fig.  2 may  be  an i m p o r t a n t  clue for  infer r ing  
the  magn i tude  of  n of  the  na tu ra l  mat r ix  a r o u n d  por -  
phyroc las t s .  
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